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Numerical renormalization group of vortex aggregation in two-dimensional decaying turbulence:
The role of three-body interactions

Clément Sire* and Pierre-Henri Chavanis†

Laboratoire de Physique Quantique, UMR C5626 du CNRS, Universite´ Paul Sabatier, 31062 Toulouse Cedex, France
~Received 14 December 1999!

We introduce a numerical renormalization group procedure which permits long-time simulations of vortex
dynamics and coalescence in a two-dimensional turbulent decaying fluid. The number of vortices decreases as
N;t2j, with j'1 instead of the valuej54/3 predicted by a naı¨ve kinetic theory. For short time, we find an
effective exponentj'0.7 consistent with previous simulations and experiments. We show that the mean
square displacement of surviving vortices grows as^x2&;t11j/2. Introducing effective dynamics for two- and
three-body collisions, we justify that only the latter become relevant at a small vortex area coverage. A kinetic
theory consistent with this mechanism leads toj51. We find that the theoretical relations between kinetic
parameters are all in good agreement with experiments.

PACS number~s!: 47.10.1g, 47.27.2i
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I. INTRODUCTION

In recent years, a great deal of work has been devote
the study of two-dimensional turbulence. Two-dimensio
turbulence is not only relevant to the study of geophysi
and astrophysical flows, but it is also far more accessible
modern computers and experiments, since the measure
and the visualization of the velocity and vorticity fields a
much easier than inD53. In addition, two-dimensional tur
bulence has deep connections with other fields of phy
such as electron plasmas in magnetic field@1# and stellar
dynamics@2#.

For the specific problem of two-dimensional decaying t
bulence, recent experimental@3–5# and theoretical@6–16#
works have emphasized the importance of coherent vo
dynamics during the fluid decay. This process essenti
consists of three stages: during an initial transient period,
fluid self-organizes and a network of coherent vortices
pears. Once the coherent vortices have emerged, vortices
appear through mergings of like-sign vortices, such that th
numberN decreases and their average radiusr increases, in a
process somewhat reminiscent of a coarsening dynam
@16#. During this process, and in the limit of small viscosit
energy remains constant. When only one dipole~or very
few! remains, it finally decays diffusively.

From the theoretical point of view, the ‘‘coarsening
stage is certainly the most interesting as, in principle, it c
extend on an arbitrary long time period. In this regime,
main question arising concerns the existence of unive
features including the decay exponentj (N;t2j), and other
exponents which describe the time evolution of quantit
such as the average vortex radius, the enstrophy or the
tosis.

In this paper, we first describe an effective model for t
vortex dynamics and review the main experimental and
merical results concerning the temporal evolution of
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physical quantities listed above. In Sec. II, we show that
surviving vortices have a hyperdiffusive motion with an e
fective diffusion coefficientD;tj/2, and a flight time distri-
bution decaying with a power-law tail. We then consider
‘‘naive’’ kinetic theory for the vortex decay dynamics pre
dicting j54/3. In Sec. III, we introduce a numerical reno
malization group~RG! procedure which permits very lon
simulation times. Although the numerical diffusion coef
cient is well described by the preceding kinetic theory, t
decay exponent is found to be significantly lower than e
pected (j'1 instead ofj54/3). In Sec. IV, we derive an
effective dynamics for two and for three neighboring vor
ces subjected to the effective noise due to far away vortic
Within these simple models, we relate the average merg
time to the decay exponentj found in the RG simulations
Our main conclusion is that the lower than expected va
for j could be explained by the fact that two-body collisio
are irrelevant at large time, whereas three-body collisio
predominate. In Sec. V, we present a simple kinetic the
taking these three-body collisions into account and yield
j51. The importance of three-body collisions in vortex d
namics was previously pointed out by Novikov@17#, in a
different context. Throughout this paper, we compare
results to recent experiments@3–5# and find a very good
overall agreement.

II. KIRCHHOFF MODEL

A. Generalities

As we are mainly concerned with the coherent vortex d
namics and merging processes, it is natural to focus on
effective behavior of the sole vortices, neglecting the inc
herent background. The route to such an effective mo
starts with the work of Kirchhoff@18# who obtained the
equations of motion of pointlike vortices in the zero viscos
limit. Vortices follow a Hamiltonian dynamics where th
vortex center coordinatesxi andyi are conjugate variables:

G i

dxi

dt
5

]H

]yi
, ~1!
6644 ©2000 The American Physical Society
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G i

dyi

dt
52

]H

]xi
, ~2!

whereG i is the circulation of vortexi, and whereH denotes
the Hamiltonian

H52(
iÞ j

G iG j ln~r i j !, ~3!

where r i j stands for the distance between vorticesi and j.
These equations of motion can be more explicitly written

dxi

dt
52(

j Þ i
G j

yi j

r i j
2

, ~4!

dyi

dt
5(

j Þ i
G j

xi j

r i j
2

. ~5!

These equations are strictly valid for pointlike vortices a
cannot describe vortex mergings. This should be accou
by hand by definingad hocmerging rules as introduced i
Refs.@7,9,13#. The authors of Ref.@9# determined a criterion
for the merging of two like-sign vortices of radiir 1 and r 2,
within the elliptical-moment model@19#. They found that,
for r 1<r 2, collapse can be observed for an initial vort
separationd,r c5ar21br1

2/r 2, wherea andb are numerical
constant of order 1 (a'2.59,b'0.61@9#!. Usingr 1,r 2 and
a.3b, one easily obtains

a1b

2
~r 11r 2!<r c<a~r 11r 2!, ~6!

which shows thatr c is of the order of the mean radius. I
Ref. @13#, the authors in fact usedr c5a8(r 11r 2) (a8
'1.7). Thus, if one considers a collection of vortices of t
same typical size, it is clear that choosing the same crit
distance for all mergings, equal to the average radiusr of the
population of vortices, cannot drastically affect the mod
properties. This was actually verified in Ref.@16#. Now that
the merging criterion has been given, the properties of
vortex resulting from the merging of two like-sign vortice
must be specified. Motivated by experiments@3–5# and nu-
merical simulations@9,12,13#, the authors of Refs.@12,13#
and @7,9# assumed that the average peak vorticityv is con-
served throughout the merging process, as well as the en
since the inviscid limit is considered. As the total ener
scales asE;Nv2r 4 ~with a possible lnN correction!, this
shows thatNr4 should be conserved, or, equivalently, tha
vortex of radiusr 85(r 1

41r 2
4)1/4 results from the merging o

two vortices of radiir 1 and r 2. Note that this conservation
law is consistent with the observed slow enstrophy diss
tion @12#. The Kirchhoff Hamiltonian dynamics and th
above merging rules finally define the ‘‘Kirchhoff model,
also called ‘‘punctuated Hamiltonian dynamics of point vo
tices’’ in the literature.

Numerical simulations of this model, starting from
population of vortices having the same typical radius, res
in a narrow radius distribution at all subsequent times@9,16#.
Moreover, it is observed that the number of vortices dec
as a power law,
ed

al

l

e

rgy

-

ts

s

N~ t !;
N0

~11t/t0!j
, ~7!

with j'0.70–0.75, much smaller than the exponent p
dicted by Batchelor theory (j52) @20#. The conservation of
the total energy and mean peak vorticity leads to the occ
rence of only one independent exponent for the time evo
tion of physical quantities@7,9#:

N~ t !;R22;t2j, r;tj/4, ~8!

Z;t2j/2, K;tj/2, ~9!

where R is the typical distance between vortices, andZ
;Nu2r 2 andK;(Nr2)21 are the entrophy and the kurtosi
respectively. The exponentj and the predicted scaling law
are consistent with experiments@3–5# and direct numerical
simulations@9# of Navier-Stokes equation~using a hypervis-
cous dissipation term!.

B. Limitation of numerical simulations

The Kirchhoff simulations and actual experiments cit
above were only carried out for very short time. In Ref.@9#
~as well as in experiments@3–5#!, the number of vortices
decays by less than a factor 4 at the maximal accessible
tmax. Raw data show significant curvature on a log-log pl
hence the introduction of an extra fitting parametert0 in Ref.
@9# @see Eq.~7!#. Sincet0'tmax/3, the simulation time is of
the order of the transient timet0, and the scaling regime fo
t@t0 is probably not reached. In Ref.@9#, the authors ob-
tainedt0'531022, to be compared totmax1t0'1931022

as expressed in their time units. In this time range, the d
sity typically decays by a factor of order 2.6. As a matter
fact, the actual exponentj obtained by measuring the loga
rithmic slope at the final time is of orderj'0.6, as obtained
by Benzi and co-workers@13,14# ~also see Sec. III B!.

It would be interesting to explore the domain of low
vortex densityn, as in all simulations performed so far th
mean free path~of the order of the typical distance betwee
vortices@11,21#! remains of the same order as the radius si
In other words, the fraction of area occupied by the vortic

s5
Npr 2

L2
5npr 25pS r

RD 2

, ~10!

remains quite large in the early time of the dynamics. B
cause of the scaling laws of Eq.~8!, R grows faster than the
mean radiusr, such that vortices become effectively mo
and more pointlike, a regime which seems to be out of
merical reach, and which should develop fort@t0. The uni-
versal features of the vortex dynamics should only appea
this regimes!1.

C. Kinetic theory for the Kirchhoff model

1. Diffusion coefficient

In the absence of mergings, the chaotic Kirchhoff dyna
ics is known to lead to an effective diffusive motion of th
vortices @16,11,21#. The diffusion coefficient can be calcu
lated by computing the fluctuation timeT(v) for a given
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6646 PRE 61CLÉMENT SIRE AND PIERRE-HENRI CHAVANIS
vortex velocityv and averaging the quantityv2T(v)/4 over
the velocity distribution. This calculation was extensive
described in Ref.@21#, and here we present a simple heuris
argument leading more directly to the same result.

Using Eqs.~4! and ~5!, the average velocity squared is

^v2&;(
j

G j
2

r i j
2

, ~11!

where we have neglected the contribution of off-diago
terms obtained when squaring Eq.~4! and Eq.~5!. If we as-
sume the vortices to be uniformly distributed on average,
the circulations to be equal up to their sign, we then obta

^v2&;NG2
2

L2Er

L xdx

x2
;2nG2 ln~L/r !;nG2 ln N,

~12!

where we have introduced the vortex typical radiusr as a
natural cutoff. This expression already obtained in Ref.@16#
was qualitatively checked in Ref.@11#, and is confirmed by
our simulations of Sec. III B.

It is then natural to assume that the mean free pathl is of
order R, the typical distance between vortices, as proved
Ref. @21#. We then obtain the expressions for the mean f
time t and the diffusion coefficient,

l;R, t;
l

v
;~nGAln N!21, D;

l 2

t
;GAln N,

~13!

in agreement with our more sophisticated treatment@21#.
Now, if we include merging events, these different qua

tities are expected to vary with time as both the densityn and
the typical circulationG do. If we drop logarithmic correc-
tions for now, we obtain

l;tj/2, t;tj/2, v;const, D;tj/2. ~14!

Note that this expression for the diffusion coefficientD dif-
fers from that obtained in Ref.@5# (D;t3j/4). Indeed, the
authors of Ref.@5# used the merging timetmerg to compute
D, instead of the fluctuation or mean free time which is r
evant here@21,11#. A naive estimate of this merging time i
addressed in Sec. II C 2.

Finally, we predict that the mean square displacemen
surviving vortices~or test particles! in the decaying fluid
should behave as@21#

^x2&;tn with n511
j

2
. ~15!

In Ref. @5#, the authors foundj'0.7, which leads ton
'1.35, using Eq.~15!. This must be compared with the ex
perimental valuesn'1.3 for vortices andn'1.4 for test
particles moving along the current lines of the fluid. Equ
tion ~15! is also in good agreement with our simulations
Sec. III B.

Note that this hyperdiffusive behavior can be interpre
by invoking a power-law decreasing flight time distributio
l

d

n
e

-

-
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-
f

d

The flight time between two deflections or large veloc
fluctuations is directly related to the fluctuation timet intro-
duced above.

Let us assume that this distribution presents the nat
scaling form

P~t,t !5^t&21f S t

^t& D;^t&m21t2m, for t→1`,

~16!

with m.2, such that the average fluctuation time^t&;tj/2

exists. Then, after a timet5( i 51
m t i;m^t& (m deflections!,

and using that̂ v2& is essentially constant, the mean squa
displacement reads

^x2&;^v2&K (
i 51

m

t i
2L ;m^t&m21E t

t22mdt;t42m^t&m22,

~17!

where we have used the relationt;m^t&. By definition, we
also know that

^x2&;Dt;^v2&^t&t, ~18!

which finally implies that

m53. ~19!

This result is in perfect agreement with the statement m
in Ref. @11# that vortex dynamics can be represented by m
ginal Lévy flights, at the border between Gaussian rand
walkers (m.3, such that the second moment oft exists! and
true Lévy flights (m,3). It is very satisfactory that the valu
found for m is independent from the dynamical exponentj.
Indeed, at a given timet, and as^t&!t, the instantaneous
flight time distribution should not be sensitive to paramet
like j describing the evolution, and should be the same
that observed in a system for which mergings are frozen
as in Ref.@11#.

However, in the experiment of Ref.@5#, an exponentm
52.660.2 has been observed, slightly lower than our va
m53. The authors of Ref.@5# implicitly assumed that̂ t&
was constant in their experiment, although the inset of th
Fig. 16 clearly shows that the flight time distribution in th
time period t55210 s is shifted toward largert values
compared to that measured in the intervalt52 –5 s „we
predict that this shift should be by a factor of order@(5
110)/(215)#j/2'1.3, in agreement with Fig. 16 of Re
@5#…. We can now reproduce the above calculation with
new assumption that

P~t!;t2m for t→1`, ~20!

with m.2, such that the average fluctuation time is no
time independent. Then, after a timet5( i 51

m t i;m^t&;m,
the mean square displacement now reads

^x2&;^v2&K (
i 51

m

t i
2L ;mE t

t22mdt;t42m;tn. ~21!

This shows that within this interpretationn542m, or using
our result forn, that
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m532
j

2
. ~22!

Usingj'0.7, we findm'2.65, now in very good agreemen
with the experimental valuem52.660.2 measured in Ref
@5#. However, let us insist again on the fact that the corr
form for the flight time distribution is definitely the one in
troduced in Eq.~16!, and that if vortices were actually dis
playing a true Le´vy particle behavior, it should have bee
seen in simulations where mergings are frozen out@11#. In-
stead, our conclusion is that vortices are marginal Le´vy par-
ticles, with an exponentm53, independent of the decay ex
ponentj. Note that this could induce logarithmic correctio
for various dynamical quantities includingN(t), which could
strongly affect the precise determination of dynamical ex
nents like j, at least in rather short time simulation
experiments~see Ref.@16#!.

2. Naive kinetic theory

The merging timetmerg is the typical time between two
merging events involving the same vortex. If we assume
vortex mergings occur whenever two like-sign vortices sta
at a distance less thanr c;r , a classical cross-section arg
ment leads to

tmerg;~nvr !21. ~23!

If we assume a scaling regime wheren(t) decays as a powe
law, tmerg must behave linearly with time@22# since

dn

dt
;2j

n

t
;2

n

2tmerg
. ~24!

Using the scaling equations~8! and ~14!, and the above ex
pression fortmerg, we finally obtain

tmerg;v21t (3/4)j;t (3/4)j, ~25!

neglecting logarithmic corrections inv. The constraint
tmerg;t then leads toj54/3, well above the measured valu
j'0.7. Note that our argument is fully consistent with
direct simulation performed by Trizac@22#, who found j
'0.7, in a ballistic system obeying the same conserva
laws as in the vortex model, but for which the typical velo
ity decreases asv;t20.47 instead of being constant. Usin
Eq.~25!, we indeed predict a decay exponentj5 4

3 (1
20.47)'0.707, in perfect agreement with the observed
cay exponent. Note that the similarity with the value of t
decay exponent observed in vortex dynamics is then pu
incidental.

In the experiment@5#, the authors obtainedtmerg;t0.6,
which strongly indicates that they had not yet reached
scaling regime, which is not too surprising as the experim
was performed on less than a time decade. As mentione
Sec. II B, this should raise some doubts about the validity
the apparent exponentj'0.7.
t
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III. NUMERICAL RENORMALIZATION GROUP „RG…

A. Implementation of the numerical RG

In this section, we address the problem of performi
long-time simulations, allowing for low vortex densityand
total vortex area coverage. Direct simulations of Kirchho
equations are doomed to failure since each evaluation
vortex velocity involves the sum overN terms@see Eqs.~4!
and ~5!#. To access very low densities, one must theref
start out with a very large initial number of vortices, whic
results in a very slow early dynamics.

The idea of the approach that we introduce in this sect
is to work with aconstantnumber of vortices in a reasonab
range (N;102160), and progressively increase the doma
size L by a procedure detailed below. For simplicity, w
work with vortices of identical radii at all times and thus
equal circulation up to a sign. This is probably a reasona
approximation, as previous short-time simulations and
periments showed that the radius and circulation distri
tions remain narrow at all times@9,16,22#. Indeed, it is very
common in aggregation models that the particle size dis
bution does not influence the value of the density decay
ponent j, provided that this distribution remains narrow
Conversely, when the scaling size distribution presents s
power-law tails,j may depend continuously on the expone
involved in the distribution~see Ref.@23# for exact results
within Smoluchowski approximation!. Physically, it is in-
deed natural to expect that when the typical radiusexistsand
is much smaller than the average inter-particle distance,
particle dispersion becomes irrelevant as far as dynam
quantities are concerned. In vortex simulations, it is fou
~see Refs.@9# and @16#! that the maximum vortex radius i
typically twice as large as the average radius. The distri
tion itself seems to be nonuniversal, and could slightly d
pend on the precise form for the merging distancer c ~differ-
ent in Ref. @9#, compared to Refs.@13,16# and the presen
paper!. Thus the radius distribution can be definitely qua
fied as narrow or monodisperse. In the present system,
thus natural to expect that dispersion effects are irrelev
although this point should require further studies@28#. More-
over, keeping such constant distributions in time sho
minimize transient time effects due to the fact that the sc
ing distributions are not yet reached~although this problem
is partly taken into account by the clever procedure int
duced in Ref.@9#!.

We thus considerN vortices of radiusr and circulation
G56vpr 2 (N/2 vortices of each sign! in a box of initial
linear sizeL, such that the initial density isn05N/L2. Peri-
odic boundary conditions are considered, and Kirchh
equations of motion are adapted to this situation@8,9#. Com-
pared to Eqs.~4! and ~5!, the velocity induced by a vortexj
on a vortexi is only significantly different for vortices at a
distance of orderL, so that the physics is not modified pa
ticularly for vortices at a typical distanceL/AN or less.

Vortices do obey Kirchhoff dynamics until two like-sig
vortices meet, i.e., their distance is less thanr c52r ~see the
discussion of Sec. II A!. Both vortices are merged, and a
radii and circulations are updated to

r 85S N

N21D 1/4

r , G856vpr 82. ~26!
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The density is updated accordingly:

n85
N21

N
n. ~27!

A new vortex of the same sign as the vortex which ju
disappeared is then introduced in the box at a random p
tion and has radiusr 8 and circulationG8. The number of
vortices in the box is then restored to its initial valueN. All
the distances are then scaled by a factor@N/(N21)#1/2:

L85S N

N21D 1/2

L, r i85S N

N21D 1/2

r i . ~28!

This renormalization procedure ensures that the new den
takes the correct value

n85
N

L82
5

N21

N

N

L2
5

N21

N
n, ~29!

and that the quantityn8r 845nr4 is conserved, ensuring th
conservation of the energy per area unit. IfN is large enough,
one may expect that the introduction of a new uncorrela
vortex after each merging should not affect the dynam
especially at large times for which the merging time is mu
larger than the mean free time. In this regime, the ne
introduced vortex which has only a probabilityN21 of being
involved in the next collision has plenty of time to get ‘‘ran
domized’’ astmerg@t.

B. Numerical results

We have performed long-time RG simulations withN
510, 20, 40, 60, 80, 100, and 160 vortices, reaching fi
densities as low as 231024n0. Except for the caseN510
which seems to decay faster, the different density plots
essentially independent from the actual number of vorti
involved in the RG~see Fig. 1!. The long-time decay expo
nent is estimated to bej50.9960.01, significantly higher
than the expected valuej'0.7 but still well below the naive
estimatej54/3 obtained in Sec. II C.

We have also measured the average mean square
placement of surviving vortices. The motion is found to
hyperdiffusive with a diffusion exponentn consistent with
the prediction of Sec. II C and Ref.@21#. Indeed, we findn
51.5060.01, to be compared withn53/2, admitting the
valuej51. This is illustrated in Fig. 2. Note that accordin
to Sec. II C 2, we thus predict a flight time distribution b
having asP(t);t25/2, for larget.

In the rangen/n050.8–0.2, corresponding to the range
density obtained in previous experiments@3–5# and simula-
tions @6,9,13,16#, we indeed obtain an apparent exponent
orderj'0.7. In Fig. 3, we compare the direct simulations
Refs.@9,16#, where vortices were allowed to develop a sc
ing radius distribution. After fitting an arbitrary time scale,
appears that our RG simulations are in good agreement
these previous works, although our RG simulations exten
almost three more decades in time.

We have also measured the mean square vortex velo
which is expected to behave as
t
si-

ity

d
s,
h
y

l

re
s

is-

f
f
-

ith
to

ty,

^v2&;nG2 lnS L~ t !

r ~ t ! D; ln~ t !. ~30!

This behavior is confirmed by our RG numerical simulation
as shown in Fig. 4.

We have also performed RG simulations introducing
distance cutoff in Kirchhoff equations~4! and ~5!, replacing
r i j

2 by (r i j
2 1r 2). Indeed, although like-sign vortices cann

approach each other closer than a distance 2r ~otherwise
they merge!, opposite-sign vortices can, which is quite u
physical as it generates very fast traveling dipoles. Introd
ing this cutoff results in a physical upper cutoff of orderG/r
for the maximum velocity of these dipoles. The number
vortices initially decays slightly more slowly, although th
long-time decay exponent remains fully compatible withj
'1.

FIG. 1. Numerical RG simulations forN510, 20, 40, 60, 80,
100, and 160 samples~250, 150, 30, 20, 15, 15, 5 samples, respe
tively!, shown from bottom to top, and the best fit of theN
560–160 curves to the functional formn(t)/n05(11t/t0)2j ~with
j50.985 andt0570.2; top curve!. For clarity, the curves have bee
offset by an arbitrary factor 2. The timet is expressed in units o
v21, and the initial total area coverage is 10%, as for most sim
lations presented in this paper. The inset shows thatn0 /n(t)21 is
perfectly linear with time (N5100), which is consistent with an
exponentj'1.

FIG. 2. Mean square displacement of surviving vortices as m
sured inN540 RG simulations.̂ x2&;tn, with n51.5060.01, in
perfect agreement with our predictionn511j/2 of Eq.~15!, when
taking j51.
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It is interesting to compare our results to new direct sim
lations where the radii and modulus of circulation are ma
tained equal for all surviving vortices. Even starting fro
N52000, it is hard to reach low densities in a reliable wa
As exemplified in Fig. 5, these direct simulations follow o
RG calculations before decaying faster beyond a break
time tN , as the density approaches the minimum reacha
densityn/n052/N. We observe that the breakdown occu
sooner for samples with a decreasing initial number of v
tices. tN is in fact of the order of the minimum time afte
which some samples had reached the minimum possible
sity ~only two opposite vortices left!. Still, Fig. 5 lends cre-
dence to the claim that the largeN limit finally reproduces
the RG results. Note finally that for these direct simulatio
the actual logarithmic correction in the mean square velo
behaves differently from that in the RG simulations, as

FIG. 3. We compare short time RG simulations~dashed curves
N560 and 20 samples!, with previous direct simulations including
a polydisperse population of vortices~for which the time unit has
been scaled to that of the RG simulations!. The agreement is good
and the apparent decay exponent is of orderj'0.64 ~extrapolated
to j;0.72–0.75). However, the data display a strong curvature
log-log plot ~see top inset!. If one plots the density as a function o
t1t0 ~with a suitablet0) instead oft, then a much better scalin
~bottom inset! is obtained for allt with an effective exponent o
orderj'0.75 ~this procedure was also used in Refs.@8# and@16#!.

FIG. 4. The plot of̂ v2&(t) ~RG simulations withN580 and 15
samples; the sampling time isDt54v21, with no time averaging!
displays a slow variation of this quantity fully compatible with th
logarithmic correction obtained in Eq.~30!. The thick line is a log-
linear fit of the scatter plot.
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box sizeL remains constant. In this case, it slowly decrea
as

^v2&;nG2 lnS L

r ~ t ! D; lnS t*
t D , ~31!

up to a time of ordert* ;tN . Note that this subdominan
difference between RG and direct simulations could be
sponsible for a slight discrepancy in the apparent decay
ponent observed in both kinds of simulations.

IV. MERGING TIME IN EFFECTIVE TWO- AND
THREE-BODY DYNAMICS

A. General form of the merging time

In this section, we are concerned with an alternative w
of evaluating the merging timetmerg as a function of the
physical parametersn, r, G . . . . On thebasis of simple di-
mensional analysis,tmerg can be expected to be proportion
to the mean free timet multiplied by an arbitrary function of
the only dimensionless parameternr2. Expecting power-law
behaviors for these quantities, a natural ansatz is

tmerg;
t

~nr2!a
, ~32!

wherea is an exponent to be determined. Dropping logari
mic corrections int @see Eq.~13!#, we obtain

tmerg;„nG~nr2!a
…

21;v21~nr2!2(11a). ~33!

Imposing thattmerg must be proportional to the actual tim
~see Sec. II C!, and using the scaling equations@Eq. ~8!#, we
find the relation between the decay exponentj anda:

j5
2

11a
. ~34!

a

FIG. 5. Direct simulations maintaining all radii equal (N
5500, 1000, and 2000) are compared to RG simulationsN
540). The saturation to the minimum reachable densityn/n0

52/N is clearly seen. However, the direct simulations follow t
RG simulations on a longer time domain asN increases, up to a
time tN , for which some samples have already reached the m
mum density. The long time apparent exponent forN52000 is of
orderj'1.1.
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Note that the naive expression oftmerg obtained in Sec. II C
can also be written in this form:

tmerg;~nvr !21;v21~nr2!23/2, ~35!

corresponding toa51/2 and thusj54/3.

B. Theory of the effective two-body dynamics

We now consider the effective dynamics of twonearby
like-sign vortices, assuming that theN22 other vortices are
at a distanceat least of order R. The velocity induced by the
other vortices on one of these two vortices can be written
the sum of the velocity induced on the center of mass@at
r05(r11r2)/2# plus a small correction:

v1x52 (
j Þ1,2

G j

y1 j

r 1 j
2

, ~36!

5v0x1dx1 (
j Þ1,2

G j

2x0 j y0 j

r 0 j
4

1dy1 (
j Þ1,2

G j

y0 j
2 2x0 j

2

r 0 j
4

,

~37!

5v0x1dx1ha1dy1hb , ~38!

where we have neglected other corrections involving hig
powers ofdx15x12x0 and dy15y12y0. After a straight-
forward calculation, we obtain a similar equation forv1y :

v1y5v0y1dx1hb2dy1ha . ~39!

Note the antisymmetric structure of Eqs.~38! and ~39!, re-
sulting from the Hamiltonian nature of the dynamics.

We will now assume thatv0x , v0y , ha , andhb can be
considered as random Gaussian variables. Their second
ments are

^v0
2

x&5^v0
2

x&5
^v2&

2
;nG2, ~40!

respectively, up to a logarithmic term~see Sec. II C and Refs
@16,11,21#!, and

^ha
2&5^hb

2&5NG2K 4x2y2

r 8 L ;NG2
1

L2ER

L x4

x8
x dx;n2G2.

~41!

We have usedR as the lower cutoff since the other vortice
were assumed to be at a distance at least of orderR. Note that
ha,b have the dimension of an inverse time and are simply
order t21;nG. It is natural to assume thatha,b have the
same correlation time as the velocity, namely the mean
time t.

Assuming thatv0x,y andha,b are Gaussian noises of co
relation timet leads us to write a simplified effective Lang
vin equation describing the dynamics of these four qua
ties,

du

dt
52

u

t
1A^u2&

t
wu , ~42!
s

r

o-

f

e

i-

whereu5v0x,y , ha,b , andwu are independentd-correlated
white noises. Such a Langevin equation was recently in
duced to describe velocity fluctuations in Ref.@11#, with rea-
sonable success.

We are now ready to construct an effective two-body s
tem in order to study the merging time. We consider tw
like-sign vortices of identical circulation in a square box
sizeR with periodic boundary conditions. These vortices a
submitted to their mutual advection and to the effective no
induced by the other vortices at a distance greater thanR. If
we define x5x12x2, y5y12y2, and d5Ax21y2, from
Kirchhoff equations and Eqs.~38! and ~39! we obtain

dx

dt
52G

y

d2
1xha1yhb , ~43!

dy

dt
5G

x

d2
1xhb2yha ~44!

as the average induced velocity cancels out. After expres
time in units of t (t→t/t) and distance in units ofR (x
→x/R, y→y/R), and noting thatG;R2/t, we end up with a
dimensionless equation of motion as anticipated in S
IV A:

dx

dt
52

y

d2
1xha1yhb , ~45!

dy

dt
5

x

d2
1xhb2yha , ~46!

whereha,b are independent Langevin random variables,
unit mean square average and correlation time.

Both vortices are initially randomly placed in the unit bo
at a mutual distanced.0.4R and their relative distance
evolves according to Eqs.~45! and ~46!, until d becomes
smaller than the scaled dimensionless parameterdc52r /R
52Anr2, which defines the merging time. As anticipate
above, the average merging time in units oft can only be a
function of this parameterdc , leading to Eq.~32!.

C. Absence of strictly two-body collisions

Numerical simulations of Eqs.~45! and ~46! lead to the
following surprising result: both vortices remain at a relati
distance greater than a constantdmin , which slightly depends
on the actual numerical constants in Eqs.~45! and ~46! @to
simplify, we have assumed the coefficients of (x,y)/d2,
^ha,b

2 &, and the correlation time ofha,b to be exactly equal to
1#. A typical long-time trajectory is shown in Fig. 6, an
perfectly illustrates the absence of collisions when the vor
size is below a certain threshold. Note that if there were
noise due to the other vortices, both vortices would stric
remain at the same distance, hence producing a circular
jectory.

Of course, our result does not prove the absence of c
sion in the actualN-body system, but strongly suggests th
the main assumption according to which all other vortic
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are at a distance greater thanR prevents both test vortice
from colliding.

Let us now give a physical interpretation of our result.
both test vortices were at the same point, their dista
would not vary since the velocity induced by the other v
tices would be exactly the same for both vortices. Th
when they are close to each other, the effective induced n
is reduced linearly with their distanced, as shown by Eqs
~45! and ~46!. In addition, as the vortices get closer to ea
other (d;r ), their relative position describes a circle, mo
ing at angular velocity of order

V;v r3r 21;
G

r
3r 21;v. ~47!

Because of this fast rotation, the effective fluctuation time
the noise, as seen in the moving frame, becomesv21!t
instead oft. Hence, not only is the driving noise reduced d
to the proximity of the test vortices, but it is also averag
out due to their fast rotation. Such a short effective fluct
tion time was in fact introduced in Ref.@16#. Another way of
interpreting the effect of the fast vortex rotation is to no
that due to the large difference between the system na
frequencyv and that of the noise perturbation (v8;t21),
the adiabatic theorem ensures that the effective perturba
is reduced by a factor of order exp(2Cvt), whereC is a
constant of order unity@24#.

Conversely, if both vortices start at a distanced,dmin ,
this fast rotating pair remains stable for a very long tim
probably infinite. Such pairs can thus only be destroyed

FIG. 6. We show typical long-time relative trajectory within th
effective two-body dynamics of Sec. IV B. For clarity, the final tim
is only tmax5200v21, although we have checked that the vortic
never reach a distance less thandmin'0.24R, up to tmax;105v21.
The anisotropy of the~squarelike! trajectory is due to the use of
Kirchhoff interaction adapted to periodic boundary conditions.
the distanced between vortices always remains of orderR, these
effects are visible, although they should disappear whend!R ~see
the discussion in Sec. III A!. Still, note that when vortices are clos
to each other, their relative quasicircular trajectory is not rea
affected by the noise due to other vortices, as explained in
IV C.
e
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the direct interaction with a third vortex, and not solely b
the background noise.

The results of this section suggest that strictly two-bo
interactions are not sufficient to generate collisions. It is th
natural to study the equivalent three-body problem, which
the subject of Sec. IV D.

D. Merging time of a three-body system

Using Eqs.~38! and~39!, we can generalize our precedin
approach to the case of three test vortices submitted to
effective noise induced by far away vortices. For the fi
vortex, the effective equations of motion now read

dx1

dt
52G2

y12

r 12
2

2G3

y13

r 13
2

1dx1ha1dy1hb1v0x , ~48!

dy1

dt
5G2

x12

r 12
2

1G3

x13

r 13
2

1dx1hb2dy1ha1v0y , ~49!

with similar equations for the two other test vortices. As w
are studying the merging time of like-sign vortices, we ta
vortex 1 and 2 to be of circulation1G, whereas vortex 3 is
left unspecified, with circulation6G.

As in Sec. IV C, these effective equations of motion c
be rescaled by expressing distances in units ofR and times in
units of t. In these new units, a collision between vortices
and 2 occurs when the distance between them is less tha
scaled dimensionless parameterdc52r /R.

The sign of the third vortex plays a significant role. Wh
it is the same as that of the other two, a phenomenon re
niscent of that which was found for two-body collisions o
curs: vortices do not collide below a certain radius, at le
during numerically observable times.

Conversely, when this third vortex is of the opposite sig
we observe a smooth dependence of the merging time
function ofdc , which is fully compatible with the functiona
form ~see Fig. 7!

tmerg;
t

nr2
; ~50!

that is,a51, and thusj51 using the results of Sec. IV A
This result is in agreement with our RG calculation, f
which we also foundj'1. Note that for larger /R, corre-
sponding to the early stage of the actual dynamics, the
parent value ofa is of ordera;2, which is compatible with
an apparent decay exponent in the rangej;0.620.7 ~see the
inset of Fig. 7!.

V. PHYSICAL PICTURE

The present study strongly suggests that for small surf
coverage (r /R!1), the relevant collision mechanism in
volves three vortices, one having an opposite circulat
from the other two. A naive picture would be that of
(1G,2G) dipole moving at the typical velocityG/r encoun-
tering an isolated vortex of any sign. The importance of th
fast traveling pairs was already suggested in Refs.@8,11#. It
is likely that the three-body collision processes need no

y
c.
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strictly occur in the simple way described above, althou
this does provide an evocative physical picture from wh
to construct an effective kinetic theory.

Following the interpretation presented above, the collis
rate is

dn

dt
;2ndip3nvdipr , ~51!

wherendip andvdip are the dipole density and typical velo
ity, and the last term is the probability per unit time for
dipole to collide with an isolated vortex. In a simple mea
field approach, dipoles of typical sizer are formed with den-
sity

ndip;n3nr2, ~52!

their velocity being of ordervdip;G/r . Finally, we obtain

dn

dt
;2n3n2r 2G, ~53!

which corresponds to a merging time

tmerg;~nGnr2!21;
t

nr2
, ~54!

which in the language of Sec. II C leads toa51, and then to
j51 ~up to logarithmic corrections!.

This simple interpretation reconciles the paradoxical
servation that although vortices arehyperdiffusive~see Secs.
II C 1 and III B! the observed decay exponentj is lower than
that found for diffusive aggregation@16,25,26# ~see also Sec
II C 2!. The dynamics is slowed down by the requirement
three close vortices for an actual merging to occur, at le
for small area coverage. Note that using Eq.~54! and energy
conservation, we can also write

FIG. 7. We plot the average merging timetmerg in units of the
mean free time as a function of the dimensionless param
(R/r )25(nr2)21, as obtained within the effective three-body d
namics of Sec. IV D. We find a good linear behavior for a sm
enough surface coverage. As explained in the text, this is consi
with a decay exponentj51. For large surface coverage~see inset!,
a log-log plot leads to an apparent exponenta;1.8, which is com-
patible with a decay exponentj;0.7, in the language of Sec. IV A
h
h

n

-

-

f
st

tmerg;
vL2

nE
. ~55!

This relation is particularly well obeyed in the experime
described in Ref.@5#, left- and right-hand side terms being

tmerg;t0.5760.12 and
vL2

nE
;

t20.1560.04

t20.7060.1
;t0.5560.14,

~56!

respectively. Thus, althoughtmerg does not behave linearly
with time in the experiment, which is probably due to th
fact that the scaling regime was not reached, all the relati
found between physical quantities@D;n21/2, n511j/2
andm532j/2 in Sec. II C, and the above relation Eq.~55!#
are fully consistent with our kinetic theory.

Note that Eq.~53! was obtained by Pomeau@15# and by
one of us@16#, but with the use of highly questionable phys
cal arguments. In Ref.@15#, the kinetic equation was written
in the form

t
dn

dt
;2n3nr2, ~57!

by arguing that after a time of ordert the collision probabil-
ity is simply the geometrical overlapping probabilitynr2,
although a cross-section argument is definitely required~see
Sec. II C!. This argument boils down to the assumption th
after a timet, the vortex positions can be considered to
randomly generated, and collisions occur if two vortic
overlap. In Ref.@16#, inspired by the theory of diffusive ag
gregation@25,26#, the kinetic equation was written in th
form

dn

dt
;2Dn2, ~58!

but with an incorrect expression for the diffusion coefficie
D ~found constant in Ref.@16#!. In Ref. @16#, the fact that
^v2& is essentially constant was correctly used, but the fl
tuation time was taken asv21 instead oft. As we have seen
in Sec. IV C, it happens that just before a collision, the
fective fluctuation time in fact becomes equal tov21, which
makes the agreement of Eqs.~58! and~53! rather incidental.

VI. CONCLUSION

In this paper, we have introduced a numerical RG pro
dure which permits very long-time simulations of the vort
Kirchhoff dynamics in a two-dimensional decaying fluid. A
though we recover a short-time regime compatible with
decay exponent of orderj'0.7 when the vortex surface cov
erage is still large andn/n0*0.2, we ultimately find a long-
time asymptotic decay withj'1. None of these results ca
be explained by the simple kinetic theory of Sec. II C bas
on the occurrence of two-body collisions which predictsj
54/3. The failure of this ‘‘naive’’ kinetic theory could be
explained by our claim that strictly two-body collisions a
irrelevant for small enough vortex surface coverage~Sec.
IV C!. For collision processes involving two like-sign vort
ces and a third opposite-sign vortex, we found an aver
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merging timetmerg;t/(nr2), fully consistent with a decay
exponentj51 ~Sec. IV C!. A simple kinetic theory based o
this collision mechanism also leads toj51 and predicts tha
tmerg;vL2/nE, in agreement with the experiment describ
in Ref. @5#. Our prediction@21# that the mean square dis
placement of surviving vortices goes as^x2&;t11j/2 is in
good agreement with our RG simulations and with expe
ments. Moreover, the exponent describing the decay of
flight time distribution ism53, showing that vortices are
marginal Lévy particles. If the flight time time dependence
not properly taken into account, one should find an appa
m532j/2, in perfect agreement with experiment.

Our work has so far been limited to the study of the d
namics of a population of vorticeshaving the same radiiat
all times. However, it is important to address the question
the possible dependence of the decay exponentj on the form
.

ys

ss

lu

t.

ys
i-
e

nt

-

f

of the radius distribution and/or the initial conditions@27#, in
order to verify its possible universality. Thus, it is a motiva
ing challenge to generalize our RG approach to the case
polydisperse assembly of vortices. A crucial point would
to correctly specify the radius of the new vortex reinject
after each merging event. This and the study of the effec
three-body dynamics of different size and/or circulation v
tices should be the subject of a future study@28#.
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